Preliminary communication

Phosphonate and related derivatives of iron

R.J. HAINES*

Research and Process Development, South African Iron and Steel Industrial Corporation Limited, P.O. Box 450, Pretoria. (Republic of South Africa)

A.L. DU PREEZ and L.L. MARAIS

Department of Inorganic and Analytical Chemistry, University of Pretoria, Pretoria (Republic of South Africa)

(Received July 7th, 1970)

Previous studies have shown that the treatment of π -C₅H₅Fe(CO)₂X (X = Cl, Br or I) with tertiary phosphines PR₃ (R = alkyl or aryl) effects either replacement of a carbonyl group or displacement of the halogen by the ligand to afford derivatives of the type π -C₅H₅Fe(CO)(PR₃)X or [π -C₅H₅Fe(CO)₂(PR₃)]X respectively^{1,2}. The tendency for halogen displacement relative to carbonyl replacement increases with the basicity of the ligand and along the series I<Br<Cl. Products formed as a result of both modes of reaction are known e.g. { π -C₅H₅Fe(CO)[P(C₆H₅]₃}₂PF₆ but the syntheses required the presence of a strong Lewis acid e.g. AlCl₃ (ref.2). We have now found that a new type of product may be isolated from the reaction of tertiary phosphites with π -C₅H₅Fe(CO)₂Cl.

The reaction of π -C₅H₅Fe(CO)₂ I with the ligands P(OR)₃ (R = CH₃, C₂H₅ and $n-C_{a}H_{9}$) in benzene at room temperature or under reflux was observed to afford neutral π -C₅H₅Fe(CO)[P(OR)₃]I in high yield. In contrast π -C₅H₅Fe(CO)[P(OR)₃]Cl was found to be a minor product (yield ca. 20%) in the corresponding room temperature reactions involving π -C₅H₅Fe(CO)₂Cl and the tertiary phosphites P(OR)₃ (R = CH₃, C₂H₅, $n-C_4H_9$ and C_3H_5). These reactions afforded two neutral halogen-free derivatives as the major products, their relative yield depending on the ligand to parent carbonyl ratio. The two compounds were separated by means of column chromatography and characterised by elemental analysis and IR and NMR spectroscopy as π -C₅H₅Fe(CO)₂P(O) (OR)₂ and π -C₅H₅Fe(CO)[P(OR)₃]P(O)(OR)₂ respectively. Confirmatory evidence for the formulation π -C₅H₅Fe(CO)₂P(O)(OR)₂ was obtained from a study of the reaction of π -C₅H₅Fe(CO)₂Cl with NaOP(OC₂H₅)₂ in THF. The product isolated viz. π -C₅H₅Fe(CO)₂P(O) (OC₂H₅)₂ was identical to the unsubstituted phosphonate obtained from the reaction of π -C₅H₅Fe(CO)₂Cl with P(OC₂H₅)₃. The IR spectra of π -C₅H₅Fe(CO)₂P(O) (OR)₂ contain a peak at ca. 1180 cm⁻¹ which is assigned to ν (P-O); this peak is shifted to ca. 1160 cm⁻¹ for the monosubstituted phosphonates π -C₅H₅Fe(CO)[P(OR)₃]P(O)(OR)₂.

^{*}To whom correspondence concerning this publication should be addressed.

J. Organometal. Chem., 24 (1970) C26-C28

It was further observed that products analogous to the above phosphonates are formed in the corresponding reactions involving tertiary phosphonites and phosphinites. Thus π -C₅H₅Fe(CO)₂P(O)(C₆H₅)(OC₃H₅) and π -C₅H₅Fe(CO)[P(C₆H₅)(OC₃H₅)₂]-P(O)(C₆H₅)(OC₃H₅) and π -C₅H₅Fe(CO)₂P(O)(C₆H₅)₂ and π -C₅H₅Fe(CO)[P(C₆H₅)₂]-(OC₃H₅)P(O)(C₆H₅)₂ were isolated from the reactions of π -C₅H₅Fe(CO)₂Cl with P(C₆H₅)(OC₃H₅)₂ and P(C₆H₅)₂(OC₃H₅), in benzene under reflux, respectively.

Addition of the ligands $L = P(OR)_3$ ($R = CH_3$ and C_3H_5), $P(C_6H_5)(OC_3H_5)_2$ and $P(C_6H_5)_2(OC_3H_5)$ to a solution of π - $C_5H_5Fe(CO)_2Cl$ and excess sodium tetraphenylborate in benzene containing a little methanol resulted in the precipitation of $[\pi$ - $C_5H_5Fe(CO)_2L]B(C_6H_5)_4$ in high yield. This suggests that ionic derivatives of the type $\{\pi$ - $C_5H_5Fe(CO)_2[P(OR)_3]\}$ Cl are intermediates in the formation of π - $C_5H_5Fe(CO)_2P(O)(OR)_2$ in the reactions discussed above and the mechanism outlined in the scheme is thus proposed.

SCHEME

$$\pi - C_{5} H_{5} Fe(CO)_{2} Cl + P(OR)_{3}$$

$$\left\{ \pi - C_{5} H_{5} Fe(CO)_{2} [P(OR)_{3}] \right\} Cl$$

$$\pi - C_{5} H_{5} Fe(CO)_{2} P(O)(OR)_{2} + RCl$$

This mechanism is similar to that proposed for the formation of π -C₅H₅Mo(CO)₂ [P(OR)₃]P(OR)₂ from $[\pi$ -C₅H₅Mo(CO)₃]₂ and P(OR)₃ (ref.3) and is analogous to the mechanism for the Michaelis—Arbuzov rearrangement involving tertiary phosphites and alkyl halides⁴. Consistent with the proposed mechanism is the observation that the nucleophilic attack of $[\pi$ -C₅H₅Mo(CO)₃] on π -C₅H₅Fe(CO)₂ [P(OCH₃)₃]⁺ afforded π -C₅H₅Fe(CO)₂P(O)(OCH₃)₂ and π -C₅H₅Mo(CO)₃CH₃. No reaction was observed between π -C₅H₅Fe(CO)₂P(O)(OCH₃)₂ and P(OCH₃)₃ in refluxing benzene which indicates that { π -C₅H₅Fe(CO)[P(OR)₃]₂} Cl is an intermediate in the formation of π -C₅H₅Fe(CO)[P(OR)₃]P(O)(OR)₂.

The results presented above together with those of the previously reported study of the reactions of $[\pi - C_5 H_5 Mo(CO)_3]_2$ with tertiary alkyl phosphites³ suggest that the formation of phosphonate derivatives through intermediates of the type $\{M[P(OR)_3]_x(Ligand)_y\}$ Anion (M = metal, R = alkyl will have general application.

÷

ACKNOWLEDGEMENTS

Two of the authors (A.L. du Preez and I.L. Marais) thank the South African Council for Scientific and Industrial Research and the University of Pretoria for financial support.

REFERENCES

- 1 A. Davison, M.L.H. Green and G. Wilkinson, J. Chem. Soc., (1961) 3172.
- 2 P.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 3 R.J. Haines, I.L. Marais and C.R. Nolte, *Chem. Commun.*, (1970) 547.
 4 R.G. Harvey and E.R. De Somber, in M. Grayson and E.J. Griffith (Eds.), *Topics in Phosphorus Chemistry*, Interscience, New York, Vol. I, 1964, p.57.

J. Organometal, Chem., 24 (1970) C26-C28